arXiv:1707.08608v2 [cs.CL] 26 Aug 2018

Gradient-based Inference for
Networks with Output Constraints

Jay Yoon Lee * Michael Wick f Sanket Vaibhav Mehta *
jaylee@cs.cmu.edu michael.wick@oracle.com svmehta@cs.cmu.edu
Jean-Baptiste Tristan Jaime Carbonell *
jean.baptiste.tristan@oracle.com jgc@cs.cmu.edu
Abstract

Practitioners apply neural networks to increasingly complex problems in natural
language processing (NLP), such as syntactic parsing that have rich output struc-
tures. Many such structured-prediction problems require deterministic constraints
on the output values; for example, in sequence-to-sequence syntactic parsing, we
require that the sequential outputs encode valid trees. While hidden units might
capture such properties, the network is not always able to learn such constraints
from the training data alone, and practitioners must then resort to post-processing.
In this paper, we present an inference method for neural networks that enforces de-
terministic constraints on outputs without performing rule-based post-processing
or expensive discrete search. Instead, in the spirit of gradient-based training, we
enforce constraints with gradient-based inference: for each input at test-time, we
nudge continuous weights until the network’s unconstrained inference procedure
generates an output that satisfies the constraints. We apply our methods to three
tasks with hard constraints: sequence transduction, constituency parsing, and se-
mantic role labeling (SRL). In each case, the algorithm not only satisfies con-
straints, but improves accuracy, even when the underlying network is state-of-the-
art.

1 Introduction

Suppose we have trained a sequence-to-sequence network [4, 17, [11] to perform a structured predic-
tion task such as constituency parsing [18]. We would like to apply our network to novel, unseen
examples, but still require that the network’s outputs obey the appropriate set of hard-constraints;
for example, that the output sequence encodes a valid parse tree. Enforcing these constraints is im-
portant because down-stream tasks, such as relation extraction or coreference resolution typically
assume that the constraints hold. Moreover, the constraints impart informative hypothesis-limiting
restrictions about joint assignments to multiple output units, and thus enforcing them holistically
might cause a correct prediction for one subset of the outputs to beneficially influence another.

Unfortunately, there is no guarantee that the neural network will learn these constraints from the
training data alone, especially if the training data is limited. Although in some cases, the outputs
of state-of-the-art systems mostly obey the constraints for the test-set of the data on which they are
tuned [18]; in practice, the quality of machine learning systems are much lower when run on data in
the wild (e.g., because small shifts in domain or genre change the underlying data distribution). In
such cases, the problem of constraint violations becomes more significant.

* School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
t Oracle Labs, Burlington, MA

Preprint. Work in progress.

http://arxiv.org/abs/1707.08608v2

This raises the question: how should we enforce hard constraints on the outputs of a neural net-
work? We could perform expensive combinatorial discrete search or manually construct a list of
post-processing rules for the particular problem domain of interest. Though, we might do even bet-
ter if we continue to “train” the neural network at test-time to learn how to satisfy the constraints
on each input. Such a learning procedure is applicable at test-time because learning constraints
requires no labeled data: rather, we only require a function that measures the extent to which a
predicted output violates a constraint.

In this paper, we present an inference method for neural networks that strongly favors respecting
output constraints by adjusting the network’s weights at test-time, for each input. Given an appropri-
ate function that measures the extent of a constraint violation, we can express the hard constraints
as an optimization problem over the continuous weights and apply back-propagation to tune them.
That is, by iteratively adjusting the weights so that the neural network becomes increasingly likely
to produce an output configuration that obeys the desired constraints. Much like scoped-learning,
the algorithm customizes the weights for each example at test-time [3], but does so in a way to sat-
isfy the constraints. We apply our method to three tasks: syntactic parsing, semantic role labeling
and a synthetic sequence transduction problem and find that the algorithm performs favorably on all
three tasks. For parsing, we apply the method to pre-trained networks that vary widely in quality,
(e.g., by about ten F1 points on parsing), and on both in and ouz-of-domain data. For this task and
others, we find that in each case, the algorithm satisfies a large percentage of the constraints (up to
98%) and that in almost every case (out-of-domain data, state-of-the art networks, and even for the
lower-quality networks), enforcing the constraints improves the accuracy. On SRL, for example, the
method successfully injects side-information, improving a state-of-the-art network by 1.5% F1 [8].

2 Constraint-aware inference in neural networks

Our goal is to design an approximate optimization algorithm that is similar in spirit to Lagrangian
relaxation in that we replace a complex constrained decoding objective with a simpler unconstrained
objective that we can optimize with gradient descent [[10, [16, [15], but is better suited for non-linear
non-convex optimization with global constraints that do not factorize over the outputs. Although the
exposition in this section revolves around Lagrangian relaxation, we emphasize that the purpose is
merely to provide intuition and motivate design choices.

2.1 Problem definition and motivation

Typically, a neural network parameterized by weights IV is a function from an input x to an output y.
The network has an associated compatibility function ¥ (y;x, W) — R that measures how likely
an output y is given an input x under weights W. The goal of inference is to find an output that
maximizes the compatibility function and this is usually accomplished efficiently with feed-forward
or greedy-decoding. In this work, we want to additionally enforce that the output values belong
to a feasible set or grammar £* that in general depends on the input. For example, in syntactic
parsing, we require that the sequence of shift-reduce commands obeys constraints ensuring that they
encode a valid parse tree that covers the entire input sentence. We are thus interested in the following
optimization problem:

max VU(x,y, W)

y 1)

s.t. yec/l*®
Feed-forward and greedy inference are no longer sufficient since the outputs might violate the global
constraints (i.e., y ¢ L£*). Instead, suppose we had a function ¢g(y, £) — R that measures a loss
between a sentence y and a grammar £ such that g(y, £) = 0 if and only if there are no grammatical
errors in y. That is, g(y, £) = 0 for the feasible region and is strictly positive everywhere else. For
example, if the feasible region is a CFL, g could be the least errors count function [[12]. We could
then express the constraints as an equality constraint and minimize the Lagrangian:

min m&x U(x,y, W)+ Ag(y, £) 2

However, this leads to optimization difficulties because there is just a single dual variable for our
global constraint, resulting in a brute-force trial and error search. Even for cases in which the con-
straint happens to factor over each output unit, it is not applicable to sequence-to-sequence models
for which there are a variable number of outputs (and thus variable number of dual variables). This

would require some mechanism for adding and removing dual variables on the fly in response to the
optimization procedure changing the length of the sequence.

Instead, we might circumvent these issues if we optimize over a trainable neural network rather
than a single dual variable. Intuitively, the purpose of the dual variables is to simply penalize the
score of infeasible outputs that otherwise have a high score in the network, but happen to violate
constraints. Similarly, observe that the network’s weights control the compatibility of the output
configurations with the input. By properly adjusting the weights, we can affect the outcome of
inference by removing mass from invalid outputs—in much the same way a dual variable affects
the outcome of inference. Unlike a single dual variable however, the network expresses a different
penalty weight for each output. And, because the weights are typically tied across space (e.g.,
CNNp) or time (e.g., RNNs) the weights are likely to generalize across related outputs. As a result,
lowering the compatibility function for a single invalid output has the potential effect of lowering
the compatibility for an entire family of related, invalid outputs; enabling faster search. In the next
subsection, we propose a novel approach that utilizes the amount of constraint violation as part of the
objective function so that we can adjust the model parameters to search for a constraint-satisfying
output efficiently.

2.2 Algorithm

Instead of solving the aforementioned impractical optimization problem, we propose to optimize a
“dual” set of model parameters W) over the constraint function while regularizing the optimized
model weights to stay close to the originally learned original pre-trained weights W. The objective
function is as follows:

I%in \I/(Xava)\)g(ya‘c)+O[||W_W)\H2

A

where y = argmax ¥(x,y, W)) S
y

Although this objective deviates from the original optimization problem, it is reasonable because by
definition of the constraint loss ¢(-), the global minima must correspond to outputs that satisfy all
constraints. Further, we expect to find high-probability optima if we initialize W) = W. Moreover,
the objective is intuitive: if there is a constraint violation in y then g(-) > 0 and the gradient will
lower the compatibility of ¥ to make it less likely. Otherwise, g(-) = 0 and the gradient of the
energy is zero and we leave the compatibility of y unchanged. Crucially, the optimization problem
yields computationally efficient subroutines that we exploit in the optimization algorithm.

To optimize the objective, the algorithm alternates maximization to find ¥ and minimization w.r.t.
W (Algorithm[T). In particular, we first approximate the maximization step by employing the neu-
ral network’s inference procedure (e.g., greedy decoding or beam-search) to find the y that approx-
imately maximizes W, which ignores the constraint loss g. Then, given a fixed ¥, we minimize the
objective with respect to the W) by performing stochastic gradient descent (SGD). Since ¥ is fixed,
the constraint loss term becomes a constant in the gradient; thus, making it easier to employ external
black-box constraint losses (such as those based on compilers) that may not be differentiable. As a
remark, note the similarity to REINFORCE [20]: output sentences are states, the decoder outputs
are actions and the constraint-loss is a negative reward. However, our algorithm terminates upon
discovery of an output that satisfies all constraints.

Algorithm 1 Constrained inference for neural nets
Inputs: test instance x, input specific CFL £*, pretrained weights W
Wy < W #reset instance-specific weights
while not converged do
y < f(x; W) #perform inference using weights Wy
VvV« g(y, Ex)%kll(x, v, W) + a% #compute constraint loss
Wy + Wy — 0V #update instance-specific weights with SGD or a variant thereof
end while

(“Soit’s a very mixed bag . ”) —» sssr!ssssrr!srrr!rr!ssrrrrrr!

iteration | output loss accuracy
0 | ssr!sr!ssssrrr!rr!ssrrrrrr! 0.0857 33.3%
11 | ssr!sr!ssssrrr!rr!ssrrrrrr! 0.0855 33.3%
12 | sssr!ssssrr!srrr!rr!ssrrrrrr! | 0.0000 100.0%

Table 1: A shift-reduce example for which the method successfully enforces constraints. The initial
output has only nine shifts, but there are ten tokens in the input. Enforcing the constraint not only
corrects the number of shifts to ten, but changes the implied tree structure to the correct tree.

3 Application to parsing

As an illustrative example, consider the structured prediction problem of syntactic parsing in which
the goal is to input a sentence comprising a sequence of tokens and output a tree describing the
grammatical parse of the sentence. One way to model the problem with neural networks is to
linearize the representation of the parse tree and then employ the familiar sequence-to-sequence
model [[18]. Let us suppose we linearize the tree using a sequence of shift (s) and reduce (r,r!)
commands that control an implicit shift reduce parser. Intuitively, these commands describe the
exact instructions for converting the input sentence into a complete parse tree: the interpretation of
the symbol s is that we shift an input token onto the stack and the interpretation of the symbol r
is that we start (or continue) reducing (popping) the top elements of the stack, the interpretation of
a third symbol ! is that we stop reducing and push the reduced result back onto the stack. Thus,
given an input sentence and an output sequence of shift-reduce commands, we can deterministically
recover the tree by simulating a shift reduce parser. For example, the sequence ssrr!ssr!rr!rr!
encodes a type-free version of the parse tree (S (NP the ball) (VP is (NP red))) for the
input sentence “the ball is red”. It is easy to recover the tree structure from the input sentence and
the output commands by simulating the shift reduce parser. Of course in practice, reduce commands
include the phrase-types (NP, VP, etc).

Note that for output sequences to form a valid tree over the input, the sequence must satisfy a number
of constraints. First, the number of shifts must equal the number of input tokens my, otherwise
either the tree would not cover the entire input sentence or the tree would contain spurious terminal
symbols. Second, the parser cannot issue a reduce command if there are no items left on the stack.
Third, the number of reduces must be sufficient to leave just a single item, the root node, on the
stack. The constraint loss g(y, £*) for this task simply counts the errors of each of the three types.

4 Related work

Previous work in enforcing hard constraints for parsing has focused on post-processing [18] or build-
ing them into the decoder via sampling [3] or search constraints [21]. More generally, recent work
has considered applying neural networks to structured prediction; for example, structured predic-
tion energy networks (SPENS) [2]. SPENS incorporate soft-constraints via back-propagating an
energy function into “relaxed” output variables. In contrast, we focus on hard-constraints and back-
propagate into the weights that subsequently control the original non-relaxed output variables via
inference. Separately, there has been interest in employing hard constraints to harness unlabeled
data in semi-supervised learning [9]. Our work instead focuses enforcing constraints at inference-
time.

Finally, as previously mentioned, our method highly resembles dual decomposition and more gener-
ally Lagrangian relaxation for structured prediction [10, [16,[15]. In such techniques, it is assumed
that a computationally efficient inference algorithm can maximize over a superset of the feasible
region (this assumption parallels our case because unconstrained inference in the neural network is
efficient, but might violate constraints). Then, the method employs gradient descent to concentrate
this superset onto the feasible region. However, these techniques are not directly applicable to our
non-linear problem with global constraints.

(“Soit’s a very mixed bag . ”) —» sssr!ssssrr!srrr!rr!ssrrrrrr!

inference method | output
unconstrained-decoder | ssr!sr!ssssrrr! rr!ssrrrrrr!
constrained-decoder | ssr!sr!ssssrrr! rr!ssrrrrrr!srr!
our method sssr!ssssrr!srrr!rr!ssrrrrrr!
true parse sssr!ssssrr!srrr!rr!ssrrrrrr!

Table 2: A shift-reduce example for which the method successfully enforces constraints. The initial
unconstrained decoder prematurely reduces “So it” into a phrase, missing the contracted verb “is.”
Errors then propagate through the sequence culminating in the final token missing from the tree
(a constraint violation). The constrained decoder is only able to deal with this at the end of the
sequence, while our method is able to harness the constraint to correct the early errors.

S Experiments

In this section we study our algorithm on three different tasks: syntactic parsing, semantic role
labeling (SRL), and a synthetic sequence transduction task. All three tasks require hard constraints,
but they play a different role in each. In syntactic parsing, constraints ensure that the outputs encode
valid trees, in semantic role labeling, constraints provide side-information about possible true-spans
and in the sequence transduction tasks they force the output to belong to a particular input-dependent
regular expression. The parsing and transduction tasks provide an opportunity to study the algorithm
on various sequence-to-sequence networks while the SRL task involves more traditional recurrent
neural networks that have exactly one output per input token.

We are interested in answering the following questions (Q1) how well does the neural network learn
the constraints from data (Q2) for cases in which the network is unable to learn the constraints, is
our method able to actually enforce the constraints and (Q3) does the method enforce constraints
without compromising the quality of the network’s output. Q3 is particularly important because we
adjust the weights of the network at test-time and this may lead to unexpected behavior.

5.1 Syntactic parsing

We investigate the behavior of the constraint inference algorithm on the shift-reduce parsing task
described in Section Bl We transform the Wall Street Journal (WSJ) portion of the Penn Tree Bank
(PTB) into shift-reduce commands in which each reduce command has a phrase-type (e.g., noun-
phrase or verb-phrase) [6]. We employ the traditional split of the data with section 22 for dev,
section 23 for test, and remaining sections 01-21 for training. We evaluate on the test set with evaltfj
FI.

In each experiment, we learn a sequence-to-sequence network on a training set and then evaluate the
network directly on the test set using a traditional inference algorithm to perform the decoding (either
greedy decoding or beam-search). Then, to address (Q1) we measure the failure-rate (i.e., the ratio
of test sentences for which the network infers an output that fails to fully satisfy the constraints).
To address (Q2) we evaluate our method on the failure-set (i.e., the set of output sentences for
which the original network produces invalid constraint-violating outputs) and measure our method’s
conversion rate; that is, the percentage of failures for which our method is able to completely satisfy
the constraints (or “convert”). Finally, to address (Q3), we evaluate the quality (e.g., accuracy or F1)
of the output predictions on the network’s failure-set both before and after applying our method.

While state-of-the-art networks almost always produce sequences that define valid trees [18]; in
practice, the parsing quality of even the best systems degrade in the wild (e.g., due to domain, genre,
tokenization, out-of-vocabulary words and data-distribution changes in general) or languages with
smaller amounts of training data.

In order to study our algorithm on a wide range of more realistic accuracy regimes, we train many
networks with different hyper-parameters producing models of various quality, from high to low,
using the standard split of the WSJ portion of the PTB. In total, we train five networks Net1-5 for
this study, that we describe below.

Shttp://nlp.cs.nyu.edu/evalb/

http://nlp.cs.nyu.edu/evalb/

F1 hyper-parameters
name | BS-9 | greedy | hidden | layers | dropout
Netl — 87.33 128 3 yes
Net2 — 86.78 128 3 yes
Net3 | 81.26 | 78.32 172 3 yes
Net4 | 78.14 | 74.53 128 3 no
Net5 | 71.54 | 67.80 128 3 no

Table 3: Parsing Networks (BS9 means beam size 9)

Inference | Network | Failure rate (n/2415) | Conversion rate | F1 (before) | F1 (after)
Netl 187 93.58 71.49 77.04

Net2 287 89.20 73.54 79.68

Greedy Net3 317 79.81 65.62 68.79
Net4 611 88.05 62.17 64.49

Net5 886 69.86 58.47 60.41

Net3 206 87.38 66.61 71.15

Beam 2 Net4 419 94.27 65.40 66.65
Net5 602 82.89 60.45 61.35

Net3 160 87.50 67.5 71.38

Beam 5 Net4 368 92.66 67.18 69.4
Net5 546 81.50 61.43 63.25

Net3 153 91.50 68.66 71.69

Beam 9 Net4 360 93.89 67.83 70.64
Net5 552 80.62 61.64 62.98

Table 4: Evaluation of the proposed constrained-inference procedure.

We train our two best baseline models (Netl,2) using a highly competitive sequence-to-sequence
architecture for machine translation, GNMT [22] with F1 scores, 86.78 and 87.33, respectively.
And, to study wider range of accuracies, we train a simpler architecture (with uni-directional en-
coders/decoders) with different hyper parameters and obtain nets (Net3-5) with F1 scores, 78.32,
74.53, 67.80, respectively. For all models, we employ Glorot initialization, and basic attention [[1].
See Table 3l for a summary of the networks, hyper-parameters, and their performance.

We study the behavior of the constraint-satisfaction method on the five networks. On Net3-5 using
various inference procedures for decoding: greedy decoding and beam-search with a beam-size of 2,
5, and 9 (resp. beam2, beam5, beam9), and also on the GNMT models Netl1,2 with greedy decoding.

We report the results in Table dl The left-most column indicates the inference procedure employed
in the experiment. The indicated inference procedure is employed both for the initial network pre-
diction and in the inner loop of our algorithm. The failure-rate is given as a fraction of violated
outputs over the total number of test examples. This statistic indicates the extent to which constraint-
violations are a problem for each initial network prior to applying constrained inference. In order
to address question Q2—the ability of our approach to satisfy constraints—we measure conversion
rates. As before, the conversion rates are the percentage of the examples in the failure-sets for which
the constraint-satisfaction method is able to satisfy all the constraints. Across all the experimental
conditions, the conversion rates are high, often above 80 and sometimes above 90.

Next, in order to address question Q3—the ability of our approach to satisfy constraints without
negatively affecting output quality—we measure the F1 scores on the failure-sets both before and
after applying the constraint satisfaction algorithm. Since this F1 measure is only defined on valid
trees, we employ heuristic post-processing, as described earlier, to ensure all outputs are valid. Over
30 experiments with different baseline models and different beam search strategies, our approach
satisfies constraints in a way that improves the quality of the parses, except one case where F1 score
decresaed by 0.04 point. (as compared to employing post-processing)

Note that an improvement on the failure-set guarantees an improvement on the entire test-set since
our method produces the exact same outputs as the baseline for examples that do not initially violate
any constraints. Consequently, for example, the GNMT network improves (Net2) on the failure-set
from 73.54 to 79.68 F1, resulting in an overall improvement from 86.56 to 87.57 F1 (entire test-set).

Genre Failure | Conversion | F1 (before) | F1 (after)
rate (%) rate (%) | F1 (before) | F1 (after)

BC 19.3 98.8 56.4 59.0
BN 11.7 98.1 63.2 68.8
PT 9.8 97.8 71.4 75.8
WB 17.6 95.3 62.0 63.2
TC 10.1 86.2 56.9 57.6

Table 5: Evaluation of GNMT parser on out-of-genre data. EvalB F1 scores are for the failure set.

Avg. Disagreement-rate | Avg. Disagreement rate | F1 (before) | F1 (after) | F1 (before) F1 (after)
(before) (%) (after) (%) (Whole set) | (Whole set)
44.65 24.85 48.07 59.73 84.44 85.67

Table 6: Evaluation of the proposed constrained-inference procedure for SRL. Avg. disagreement
rate and Eval F1 scores for failure set (first 4 columns) and Eval F1 score for whole set (last 2
columns).

In Table [l we provide an example data-case that shows how our algorithm solves the initially vi-
olated shift-reduce parse output. For simplicity we omit the phrase-types and display only on the
shift (s), reduce (t) and stop reducing commands (!), and color them red if there is an error. The
algorithm satisfies the constraint in just 12 iterations, and this results in a perfectly correct parse.
What is interesting about this example is that the original network commits a parsing mistake early
in the output sequence. This type of error is problematic for a naive decoder that greedily enforces
constraints at each time-step. The reason is that the early mistake does not create a constraint vio-
lation until it is too late, at which point errors have already propagated to future time-steps and the
greedy decoder must shift and reduce the last token into the current tree, creating additional spurious
parse structures. In contrast, our method treats the constraints holistically, and uses it to correct the
error made at the beginning of the parse. See Table [2|for a comparison.

We also measure how many iterations of our algorithm it takes to convert the examples that have
constraint-violations. Across all conditions, it takes 5—7 steps to convert 25% of the outputs, 620
steps to convert 50%, 15-57 steps to convert 80%, and 55-84 steps to convert 95%.

Out of domain parsing Earlier, we study our algorithm on a wide range of networks with different
performance characteristics in order to mimic the performances on out of domain (or genre data).
Now we further investigate the performance on actual out of domain (genre) data, by using the
multi-genre OntoNotes corpus.

In particular, we train the best performing model from above, GNMT, on the Wall Street Journal
portion of OntoNotes and then test on the additional genres provided in the OntoNotes Tree Bank
corpus: broadcast conversation (BC), broadcast news (BN) newswire (NW), weblogs (WB), pivot
corpus (PT), and telephone conversation (TC). The F1 on the within-genre data (test set of PTB) is
85.03, but the F1 on these genres is much lower, ranging from the mid-forties on broadcast conver-
sation (46.2—78.5 depending on the subcategory) to the low-eighties on broadcast news (68.3—81.3.
depending on the subcategory). Indeed, we find that overall the F1 accuracy is lower and in some
cases, like weblogs, the failure rate is much higher (17.6% for WB vs. 11.9% for WSJ). Following
the same experimental protocol as on the PTB data, we produce the results in Table [3 (aggregating
over all subcategories in each genre). We see that across all genres, the algorithm has high conver-
sion rates (sometimes close to 100%), and that in each case, enforcing the constraints improves the
FI.

5.2 Semantic Role Labeling

We now turn to a different task and network: semantic role-labeling. Semantic role labeling (SRL) is
a separate but complementary task to syntactic parsing. While syntactic parsing focuses on identify-
ing relatively deep syntax tree structures, SRL focuses on identifying shallow semantic information
about phrases. We ask the question: can our algortithm succesfully incorporate side-information
during inference via constraints into an existing state-of-the-art SRL network? The constraints we

consider in this experiment enforce that the output of the SRL network must agree with the spans
implied by the true syntactic parse of the sentence.

We employ the state-of-the-art AllenNLP semantic role labeling network with ELMO embeddings,
which is essentially a multi-layer highway bi-LSTM that produces BIO output predictions for each
input token [§, |13]. For data we employ OntoNotes, which has labels for both SRL and syntactic
parsing [[19]. We evaluate our model on the test-set (29k examples), out of which consistent parse
information is available for 82.39% examples (we only include side-information for this subset).

We repeat our same experimental procedure as before, but for this network and task. From Table
[6] we see that the algorithm is able to satisfy the constraints in 82.39% of the test examples, and
that this boost the overall F1 measure by 1.23 point over the state-of-the-art AllenNLP network [[14]
that does not incorporate the constraints (they report 84.6 F1, we obtain a similar 84.4 with their
network, and achieve 85.67 after enforcing constraints with our inference). Further, to address (Q1)
we measure the avg. disagreement rate (i.e., the ratio of predicted spans in a sentence that disagree
with the spans implied by the true syntactic parse of the sentence). To address (Q2) we evaluate
our method on the failure set (i.e., the set of sentences for which disagreement rate is nonzero) and
measure our method’s avg. disagreement rate. Finally, to address (Q3), we evaluate the quality (F1)
of the output predictions on the network’s failure-set both before and after applying our method.
From Table[6 we can see that by using our constrained-inference procedure the avg. disagreement
rate goes down from 44.65% to 24.85% on the failure-set which results in an improvement from
48.07 to 59.73 F1 on failure-set. These improvements are similar to those we observe in the parsing
task, and provide additional evidence for answering Q1-3 favorably.

As an actual example of how the constraints help, consider the sentence: “it is really like this, just
look at the bus sign.” in which we must tag the two-argument verb “is” as the predicate, “it” as its
first argument and the prepositional phrase“like this” as its second argument. The original network
incorrectly predicts “really like this” as the second argument. However, the parse tree (a) has no such
span because “really” is part of the verb phrase “is really like this” and (b) does have the phrase “like
this.” Thus enforcing the constraint that the output spans only obey spans implied by the parse-tree
causes the network to correctly predict the second argument as “like this.”

5.3 Simple Transduction Experiment

In our final experiment we focus on a simple sequence transduction task in which we find that despite
learning the training data perfectly, the network fails to learn the constraint in a way that generalizes
to the test set.

A transducer T' : Lg — L is a function from a source language to a target language. In our
experiment, we employ a known 7' to generate input/output training examples and train a sequence-
to-sequence network to learn 7" on that data. Crucially, there are hard constraints on the output (for
example, the output must belong to L, and other problem-specific constraints that may in general
depend on the input sentence). If the network is unable to learn all the constraints from data, then
our method is applicable and we can evaluate its performance.

For our task, we choose a simple transducer, similar to those studied in recent work [7]. The source
language Lg is (az|bz)* and the target language L1 is (aaalzb)*. The transducer is defined to
map occurrences of az in the source string to aaa in the target string, and occurrences of bz in the
source string to zb in the target string. For example, T'(bzazbz) — zbaaazb. The training set
comprises 1934 sequences of length 2-20 and the test set contain sentences of lengths 21-24. We
employ shorter sentences for training to require generalization to longer sentences at test time.

We employ a thirty-two hidden unit single-layered, attention-less, sequence-to-sequence long short-
term memory (LSTM) in which the decoder LSTM inputs the final encoder state at each decoder
time-step. We train the network for 1000 epochs using RMSProp to maximize the likelihood of the
output (decoder) sequences in the training set. The network achieves perfect train accuracy while
learning the rules of the target grammar L1 perfectly, even on the test-set. However, the network
fails to learn the input-specific constraint that the number of a’s in the output should be three times
the number of a’s in the input. This illustrates how a network might rote-memorize constraints rather
than learn the rule in a way that generalizes. Thus, enforcing constraints at test-time is important.
To satisfy constraints, we employ our method with a constraint loss g, a length-normalized quadratic
(324 — ya)?/(m + n) that is zero when the number of a’s in the output (y,) is exactly three times

the number in the input (z,). Our method achieves a conversion rate of 65.2% after 100 iterations,
while also improving the accuracy on the failure-set from 75.2% to 82.4%. This synthetic experiment
provides additional evidence in support of Q2 and Q3, on a simpler small-capacity network.

6 Conclusion

We presented an algorithm for satisfying constraints in neural networks that avoids combinatorial
search, but employs the network’s efficient unconstrained procedure as a black box. We evaluated
the algorithm on three tasks including sequence-to-sequence parsing and found that it could satisfy
up to 98% of the constraints. Accuracy in each of the three tasks was improved by respecting
constraints. An exciting area of future work is to generalize our method and explore the idea of
neural Lagrangian relaxation, in which a neural network replaces the dual variable in the Lagrangian
optimization problem. In much the same way that neural networks have successfully modeled the
latent variables in variational learning, we hope that the networks could learn the Lagrange variables
and provide extremely fast amortized inference for constrained optimization.

References

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. CoRR, arXiv preprint arXiv:1409.0473,2014.

[2] David Belanger and Andrew McCallum. Structured prediction energy networks. In Interna-
tional Conference on Machine Learning, 2016.

[3] David M. Blei, Andrew Bagnell, and Andrew K. McCallum. Learning with scope, with ap-
plication to information extraction and classification. In Uncertainty in Artificial Intelligence
(UAI), 2002.

[4] Kyunghyun Cho, Bart Van Merriénboer, Caglar Giilgehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder—
decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), pages 1724—1734. Association for
Computational Linguistics, October 2014.

[5] Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. Recurrent neural
network grammars. In NAACL-HLT, pages 199-209, 2016.

[6] Marcus Mitchell et al. Treebank-3 1dc99t42 web download. In Philidelphia: Linguistic Data
Consortium, 1999.

[7] Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learning
to transduce with unbounded memory. In Neural Information Processing Systems (NIPS),
2015.

[8] Luheng He, Kenton Lee, Mike Lewis, and Luke S. Zettlemoyer. Deep semantic role labeling:
What works and what’s next. In ACL, 2017.

[9] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric P. Xing. Harnessing deep
neural networks with logical rules. In Association for Computational Linguistics (ACL), 2016.

[10] Terry Koo, Alexander M Rush, Michael Collins, Tommi Jaakkola, and David Sontag. Dual
decomposition for parsing with non-projective head automata. In Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing, pages 1288—1298. Asso-
ciation for Computational Linguistics, 2010.

[11] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani,
Victor Zhong, Romain Paulus, and Richard Socher. Ask me anything: Dynamic memory
networks for natural language processing. Machine Learning, pages 1378-1387,2016.

[12] Gordon Lyon. Syntax-directed least-errors anallysis for context-free languages: A practical
approach. Programming Languages, 17(1), January 1974.

[13] Matthew E. Peters, Mark Neumann, Mohit [yyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer. Deep contextualized word representations. CoRR, abs/1802.05365,
2018.

[14] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Ken-
ton Lee, and Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint
arXiv:1802.05365,2018.

[15] Alexander M. Rush and Michael Collins. A tutorial on dual decomposition and lagrangian
relaxation for inference in natural language processing. Journal of Artificial Intelligence Re-
search, 45:305-362, 2012.

[16] Alexander M Rush, David Sontag, Michael Collins, and Tommi Jaakkola. On dual decom-
position and linear programming relaxations for natural language processing. In Proceedings
of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 1-11.
Association for Computational Linguistics, 2010.

[17] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural
networks. In Neural Information Processing Systems (NIPS), 2014.

[18] Oriol Vinyals, Luksz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton.
Grammar as a foreign language. In NIPS, 2015.

[19] Ralph Weischedel, Sameer Pradhan, Lance Ramshaw, Jess Kaufman, Michelle Franchini, Mo-
hammed El Bachouti, Nianwen Xue, Martha Palmer, Jena D. Hwang, Claire Bonial, Jinho
Choi, Aous Mansouri, Maha Foster, Abdel aaati Hawwary, Mitchell Marcus, Ann Taylor, Crag
Greenberg, Eduard Hovy, Robert Belvin, and Ann Houston. Ontonotes release 5.0. In LDC
Catalog, 2012.

[20] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine Learning, 8:229-256, 1992.

[21] Sam Wiseman and Alexander M. Rush. Sequence-to-sequence learning as beam-search opti-
mization. In Empirical Methods in Natural Language Processing, pages 1296-1306, 2016.

[22] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural ma-

chine translation system: Bridging the gap between human and machine translation. CoRR,
arXiv preprint arXiv:1609.08144,2016.

10

	1 Introduction
	2 Constraint-aware inference in neural networks
	2.1 Problem definition and motivation
	2.2 Algorithm

	3 Application to parsing
	4 Related work
	5 Experiments
	5.1 Syntactic parsing
	5.2 Semantic Role Labeling
	5.3 Simple Transduction Experiment

	6 Conclusion

